NOT SO SEXY

The health risks of secret chemicals in fragrance

CANADIAN EDITION
MAY 2010
ABOUT THE CAMPAIGN FOR SAFE COSMETICS

The Campaign for Safe Cosmetics is a national coalition of nonprofit women's, environmental, public health, faith and worker safety organizations. Our mission is to protect the health of consumers and workers by securing the corporate, regulatory and legislative reforms necessary to eliminate dangerous chemicals from cosmetics and personal care products.

ABOUT THE ENVIRONMENTAL WORKING GROUP

Environmental Working Group (EWG) is a nonprofit research and advocacy organization based in Washington DC and founded in 1993. Our team of scientists, engineers, policy experts, lawyers and computer programmers pores over government data, legal documents, scientific studies and our own laboratory tests to expose threats to your health and the environment, and to find solutions. The mission of the Environmental Working Group (EWG) is to use the power of public information to protect public health and the environment. EWG specializes in providing useful resources (like Skin Deep and the Shoppers' Guide to Pesticides in Produce) to consumers while simultaneously pushing for national policy change.

ABOUT ENVIRONMENTAL DEFENCE CANADA

Environmental Defence protects the environment and human health. We research. We educate. We go to court when we have to. All in order to ensure clean air, clean water and thriving ecosystems nationwide, and to bring a halt to Canada's contribution to climate change. Nationwide.

www.environmentaldefence.ca

Copyright May 2010 by the Breast Cancer Fund, Commonweal and Environmental Working Group.

EXECUTIVE SUMMARY

A rose may be a rose. But that rose-like fragrance in your perfume may be something else entirely, concocted from any number of the fragrance industry’s 3,100 stock chemical ingredients, the blend of which is almost always kept hidden from the consumer.

Laboratory tests commissioned by the Campaign for Safe Cosmetics and analyzed by Environmental Working Group found, in all, 40 chemicals in the 17 name-brand tested fragrance products. 38 of these were secret, or unlabelled, for at least one of the products containing them, while the other 2 were listed on all relevant product labels. Ingredient labels disclosed the presence of another 51 chemical ingredients, giving a total of 91 chemical ingredients altogether in the tested products, including hidden and disclosed ingredients combined. Of the 17 products tested, 13 were purchased in the U.S. and four in Canada. The Canadian-purchased products are American Eagle Seventy Seven, Acqua Di Gio by Giorgio Armani, Light Blue by Dolce & Gabbana, and Quiksilver (for men) and were, in fact, some of the highest scoring products in terms of number of total chemicals, secret chemicals, and sensitizing chemicals. Acqua Di Gio contained the highest number of total chemicals and the highest number of sensitizing chemicals, and American Eagle Seventy Seven contained the highest number of secret chemicals. Quiksilver (for men) was tied with two others for the highest number of hormone disrupting chemicals. The Canadian products are highlighted in red in the report's charts. None of the chemicals labelled or found in the Canadian products are on the Canadian Cosmetic Ingredient Hotlist, a list of prohibited substances in cosmetics, although some are restricted in European cosmetics. Products were tested by Analytical Sciences, an independent laboratory in Petaluma, California.

Key findings:

- **Secret chemicals:** Laboratory tests revealed 38 secret chemicals in 17 name-brand products, with an average of 14 secret chemicals per product. American Eagle Seventy Seven contained 24 secret chemicals, nearly twice the average found in other products tested.

- **Multiple sensitizers:** The products tested contained an average of 10 chemicals that are known to be sensitizers and can trigger allergic reactions, such as asthma, wheezing, headaches and contact dermatitis. All of these were listed on product labels. Giorgio Armani Acqua Di Gio contained 19 different sensitizing chemicals that can trigger allergic reactions, more than any other product tested.

- **Multiple hormone disruptors:** A total of 12 different hormone-disrupting chemicals were found in the tested products, with an average of four in each product. Three products each contained seven different chemicals with the potential to disrupt the hormone system: Halle by Halle Berry, Quiksilver and Jennifer Lopez J. Lo Glow. In each product, six of these chemicals mimic the hormone estrogen, and the seventh is associated with thyroid effects. Some of these potential hormone disruptors were listed on labels; others were undisclosed and were uncovered in product testing.

continued on next page…
• **Widespread use of chemicals that have not been assessed for safety:** Health Canada does not systematically test fragrance ingredients for safety in personal care products. The Cosmetic Ingredient Review (CIR), an industry-funded and self-policing body, has assessed only 19 of the 91 ingredients listed on labels or found in testing for the 17 products assessed in this study. The International Fragrance Association (IFRA) and the Research Institute for Fragrance Materials (RIFM), which develop and set voluntary standards for chemicals in the “fragrance” component of products, have assessed only 27 of the 91 ingredients listed on labels or found in testing for the 17 products assessed in this study, based on a review of assessments published in the past 25 years.

<table>
<thead>
<tr>
<th>Results at a glance for all fragrance ingredients combined (disclosed on label or revealed in product tests)</th>
<th>Average for all 17 fragrances</th>
<th>Extreme product (highest number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical ingredients (tested + labeled)</td>
<td>29</td>
<td>40 Giorgio Armani Acqua Di Gio</td>
</tr>
<tr>
<td>Secret chemicals (found in testing, not on label)</td>
<td>14</td>
<td>24 American Eagle Seventy Seven</td>
</tr>
<tr>
<td>Sensitizing chemicals (can trigger allergic reactions)</td>
<td>10</td>
<td>19 Giorgio Armani Acqua Di Gio</td>
</tr>
<tr>
<td>Hormone disruptors (can disrupt natural hormones)</td>
<td>4</td>
<td>7 Halle by Halle Berry, Quiksilver, Jennifer Lopez J. Lo Glow</td>
</tr>
<tr>
<td>Chemicals not assessed for safety (by government or industry)</td>
<td>12</td>
<td>16 Coco Mademoiselle Chanel, Halle by Halle Berry, American Eagle Seventy Seven</td>
</tr>
</tbody>
</table>

Source: Environmental Working Group analysis of product labels and tests commissioned by the Campaign for Safe Cosmetics. Health risks from secret chemicals depend on the mixture in each product, the chemicals hazards, the amounts that absorb into the body, and individual vulnerability to health problems.

Note: Products purchased in Canada are highlighted in red.

People have the right to know which chemicals they are being exposed to. They have the right to expect the government to protect people, especially vulnerable populations, from hazardous chemicals. In addition to required safety assessments of ingredients in cosmetics, the laws must be changed to require the chemicals in fragrance to be fully disclosed and publicly accessible on ingredient labels.
INTRODUCTION

When sprayed or applied on the skin, many chemicals from perfumes, cosmetics and personal care products are inhaled. Others are absorbed through the skin. Either way, many of these chemicals can accumulate in the body. As a result, the bodies of most Americans and Canadians are polluted with multiple cosmetics ingredients. This pollution begins in the womb and continues through life.

Most unfortunately, widespread exposure and a long-standing culture of secrecy within the fragrance industry continue to put countless people at risk of contact sensitization to fragrances with poorly-tested and intentionally unlabeled ingredients (Schnuch 2007).

Product tests initiated by the Campaign for Safe Cosmetics and subsequent analyses, detailed in this report, reveal that widely recognized brand-name perfumes and colognes contain secret chemicals, sensitizers, potential hormone disruptors and chemicals not assessed for safety. Fragrance secrecy in Canada is due to a loophole in the Canadian Cosmetic Regulations, which took effect in 2004. Under the regulations, while all intentional non-fragrance ingredients must be listed on cosmetics and personal care products, companies can choose to lump intentional fragrance ingredients under the generic term “parfum” (Health Canada 2008). By taking advantage of this loophole, the cosmetics industry has kept the public in the dark about the ingredients in fragrance, even those that present potential health risks or build up in people’s bodies.

Additionally, Canada does not require manufacturers to systematically test the chemicals used in personal care products for safety. After these products are on the market, government product testing is often only done in special circumstances. As a result, people using perfume, cologne, body spray and other scented cosmetics, such as lotion and aftershave, are unknowingly exposed to chemicals that may increase their risk for certain health problems.

In addition to the secret chemicals found via testing, some chemicals that are disclosed on the labels of the products in this report also raise safety concerns. They include sunscreen and ultraviolet-protector chemicals associated with hormone disruption (Schlumpf 2004) and 24 chemical sensitizers that can trigger allergic reactions (European Commission Scientific Committee on Cosmetic Products and Non-Food Products (EC) 1999).
As our test results show, short of sending your favorite perfume to a lab for testing, shoppers have no way of knowing exactly which of the 3,100 fragrance ingredients may be hiding in their beauty products or even in their child’s baby shampoo. This study focused on several categories of chemicals – specifically volatile compounds, semi-volatile compounds and synthetic musks. The laboratory analyses, while thorough, were not exhaustive, which means that additional chemicals of concern may also be present in the tested products.

SECTION 1: SECRET CHEMICALS

Avoiding questionable fragrance ingredients in personal care products, under current laws, is nearly impossible. Numerous products used daily, such as shampoos, lotions, bath products, cleaning sprays, air fresheners and laundry and dishwashing detergents, contain strongly scented, volatile ingredients that are hidden behind the word “parfum” or “fragrance.” Some of these ingredients react with ozone in the indoor air, generating many potentially harmful secondary air pollutants such as formaldehyde and ultrafine particles (Nazaroff 2004).

Increasingly, personal care products have claims like “natural fragrance,” “pure fragrance” or “organic fragrance.” None of these terms has an enforceable legal definition. All can be misleading. One study found that 82 per cent of perfumes based on “natural ingredients” contained synthetic fragrances (Rastogi 1996). Moreover, just because a fragrance ingredient is derived from a plant or an animal source does not mean it is safe for everyone, since many all-natural and herbal products contain fragrance allergens (Scheinman 2001).

Ingredients not in a product’s hidden fragrance mixture must be listed on the label. As a result, manufacturers disclose some chemical constituents on ingredient lists but lump others together in the generic category of “parfum” or “fragrance.” In fact, “fragrances” are typically mixtures of many different secret chemicals, like those uncovered in this study.
What Was Found

Laboratory tests commissioned by the Campaign for Safe Cosmetics revealed 38 secret chemicals in 17 name-brand fragrance products, compounds detected in tests but not listed on labels. American Eagle Seventy Seven contained the greatest number, with 24, followed by Coco Mademoiselle Chanel with 18, and Britney Spears Curious and Giorgio Armani Acqua Di Gio with 17. On average, the fragrance products tested contained 14 secret chemicals not disclosed on labels. Among them are chemicals associated with hormone disruption and allergic reactions, and many substances that have not been assessed for safety in personal care products.

The Environmental Working Group assessed these compounds against the published scientific literature, uncovering a wide range of troubling evidence pointing to potential health hazards and the likelihood for some of these compounds to accumulate in human tissues or cross the placenta when pregnant women are exposed. For many of the secret chemicals, no safety studies are publicly available in the open scientific literature.

When it comes to their use in fragrance, the safety of many of the secret compounds identified in this study cannot be assessed from the scant records of toxicity data in the public scientific literature.

Of 38 undisclosed chemicals in the 17 fragrance products assessed:

- 10 undisclosed chemicals lack any public toxicity information whatsoever in published scientific literature, according to EWG’s survey of the federal government’s comprehensive PubMed online scientific library.

- At least 6 other undisclosed compounds have three or fewer published toxicity studies, or have been deemed by a government agency to be completely lacking toxicity data for critical health risks of concern, such as cancer or birth defects. One notable example is the jasmine-scented chemical called hedione (methyl dihydrojasmonate), one of the most commonly used fragrances in perfumes and colognes. PubMed contains only one published toxicity study on hedione (Politano 2008), even though more than 1,000 metric tons of the fragrance compound are used every year worldwide.

- 9 undisclosed chemicals are potential sensitizers or contact allergens, based on laboratory studies or investigations of human volunteers, including four compounds that companies must explicitly list on product labels in the EU so consumers can avoid them if they choose.

- 6 undisclosed chemicals are potential hormone disruptors based on published laboratory or epidemiology studies, including diethyl phthalate, a chemical found in 97 per cent of Americans (Silva 2004) and linked to sperm damage in human epidemiological studies (Swan 2008); musk ketone, a synthetic fragrance ingredient that concentrates in human fat tissue and breast milk (Reiner 2007); octinoxate, a sunscreen chemical that may affect estrogen and thyroid hormones (Schlumpf 2004); and Tonalide, a synthetic musk that may interfere with estrogen and androgens (male hormones) (Schreurs 2005).

continued on next page...
• 12 undisclosed chemicals pose other potential health risks. For example, in a recently published, two-year study of laboratory animals, the National Toxicology Program found evidence of carcinogenicity for the fragrance compound myrcene (NTP 2009), an ingredient in 16 of 17 fragrance products assessed in this study. Another study indicates that inhalation exposure to the fragrance compound p-cymene is associated with neurotoxicity (reduced density and number of synapses) in laboratory animals (Lam 1996). This compound was found in 11 of 17 products.

• On average, the 17 name-brand fragrances tested in this study contained nearly equal numbers of secret and labeled ingredients, with 14 chemicals kept secret but found through testing, and 15 disclosed on labels.

For most undisclosed ingredients, very few toxicity studies are available. Much of the data that is available, including studies highlighted above and in Appendix D, indicate cause for concern and the need for further study.

Popular fragrances contain 14 secret chemicals on average

Source: Environmental Working Group analysis of product labels and tests commissioned by the Campaign for Safe Cosmetics. Health risks from secret chemicals depend on the mixture in each product, the chemicals hazards, the amounts that absorb into the body, and individual vulnerability to health problems.
SECTION 2: SENSITIZERS

During the last 20 years, fragrance contact allergy has become a major global health problem (Scheinman 2002). Many scientists attribute this phenomenon to a steady increase in the use of fragrance in cosmetics and household products (Johansen 2000; Karlberg 2008). Fragrance is now considered among the top five allergens in North America and European countries (de Groot 1997; Jansson 2001) and is associated with a wide range of skin, eye and respiratory reactions. Repeated, cumulative exposure to chemical sensitizers like allergenic fragrance ingredients increases the chance that a person will develop allergic symptoms later in life (Buckley 2003). A clinical review of fragrance ingredients found that at least 100 are known to cause contact allergy (Johansen 2003), a potentially debilitating condition that can result in itchy, scaly, painful skin. Fragrance-induced dermatitis (eczema) can develop anywhere on the body, but the hands, face and axillae (underarm, from use of deodorants) are most often affected. Hand eczema impairs quality of life and is also of economic consequence for society, due to allergy sufferers' missed workdays and need for medical treatment. Unfortunately, many consumers do not know which specific chemical ingredient may trigger their fragrance sensitivity and contact allergy.

Also unfortunately, scientists have not determined precisely how inhaling perfume chemicals can cause respiratory distress (Eberling 2004; Schnuch 2010) or how exposures to traces of a fragrance can trigger contact allergy (EC 1999). They are trying to establish whether reactions are triggered by scent chemicals themselves (Lastbom 2003), their oxidation products (Christensson 2009) or other ingredients such as phthalates, which are strongly associated with asthma and other reactive airway symptoms (Bornehag 2010; Mendel 2007).

Companies using these compounds can choose to comply with concentration limits recommended by the International Fragrance Association to help prevent users from developing allergies or contact dermatitis. But these limits are based on the assumption that people are exposed to just one sensitizer at a time. The prevalence of fragrance allergies suggests that the fragrance industry’s self-imposed concentration limits are either not followed or not sufficiently protective.

Compared to companies selling in Canada, those marketing fragrances in Europe are required to fully disclose common allergens. In 1999, the European Commission’s Scientific Committee on

In 2007, the American Contact Dermatitis Society named fragrance “Allergen of the Year.”

— American Contact Dermatitis Society 2010
Cosmetic Products and Non-Food Products (SCCNFP) published a list of well-known allergenic substances comprised of 24 chemicals and two botanical preparations. These ingredients are all used as scents, are recognized to be allergens or to form allergenic oxidation products upon storage, and must be listed on the labels of any personal care product containing them (EC 1999; van Oosten 2009). The EU’s SCCNFP committee decided these allergenic substances must be listed on the label whenever their concentration in a leave-on product exceeds 0.001 per cent (10 parts per million or ppm).

Many of the sensitizing chemicals in perfumes and colognes are also found in a wide range of other products, increasing a consumer’s total exposures and overall risk for developing allergies. For example, limonene is a fragrance chemical that is commonly used as a solvent in cleaning products and degreasers where it may be listed as “citrus oil.” While on the shelf or in the warehouse, limonene breaks down to form potent sensitizers (Karlberg 1997; Topham 2003). Of additional concern, limonene can react readily with ozone, both indoors and outdoors, to generate a range of hazardous pollutants such as formaldehyde, acetaldehyde and ultrafine particles. (Nazaroff 2004; Singer 2006). Some of these secondary pollutants are carcinogens and pose a variety of other health concerns such as asthma (USEPA 2005; USEPA 2007a). Another common sensitizer is the lavender oil component linalool and its derivatives linalyl acetate and linalyl anthranilate, which form contact allergens when exposed to air (Hagvall, 2008; Skold, 2008). Similarly, geraniol, a rose oil component, becomes more allergenic upon storage and oxidation (Hagvall, 2007).

What Was Found

Sensitizing chemicals that can trigger allergic reactions were common in the 17 name-brand fragrances assessed in this study:

- Perfumes, colognes and body sprays contained an average of 10 sensitizing ingredients each.
- Giorgio Armani Acqua Di Gio contained 19 different sensitizing chemicals, more than any other product assessed.
- Limonene was found in 16 tested products, the lavender oil component linalool was found in 14 tested products, and geraniol was found in 12 tested products
- 22 of the 26 EU-recognized sensitizers were found in the products tested in this study.
- Altogether, the 17 products assessed contained 24 chemicals classified as sensitizers or chemicals with sensitizing potential according to the International Fragrance Association, the European Union or the peer-reviewed scientific literature (Api 2008; EC 1999).
Table 1: Chemical sensitizers in popular perfumes, colognes and body sprays

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-Isomethyl Ionone</td>
<td>19</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Amyl Cinnamaldehyde</td>
<td></td>
</tr>
<tr>
<td>Benzyl Alcohol</td>
<td></td>
</tr>
<tr>
<td>Benzyl Benzoate</td>
<td></td>
</tr>
<tr>
<td>Benzyl Cinnamate</td>
<td></td>
</tr>
<tr>
<td>Benzy! Salicylate</td>
<td></td>
</tr>
<tr>
<td>Cinnamal</td>
<td></td>
</tr>
<tr>
<td>Citral</td>
<td></td>
</tr>
<tr>
<td>Citronellol</td>
<td></td>
</tr>
<tr>
<td>Coumarin</td>
<td></td>
</tr>
<tr>
<td>Eugenol</td>
<td></td>
</tr>
<tr>
<td>Eucalyptus Forfuracea Extract</td>
<td></td>
</tr>
<tr>
<td>Farnesol</td>
<td></td>
</tr>
<tr>
<td>Geraniol</td>
<td></td>
</tr>
<tr>
<td>Hexyl Cinnamaldehyde</td>
<td></td>
</tr>
<tr>
<td>Hydroxycitronellal</td>
<td></td>
</tr>
<tr>
<td>Isoeugenol</td>
<td></td>
</tr>
<tr>
<td>Lilial</td>
<td></td>
</tr>
<tr>
<td>Linalool</td>
<td></td>
</tr>
<tr>
<td>Linalyl Acetate</td>
<td></td>
</tr>
<tr>
<td>Linalyl Anthranilate</td>
<td></td>
</tr>
</tbody>
</table>

- Sensitizing chemical listed on ingredient label or found in product testing. Some of these chemicals such as eugenol, lilial or limonene, were listed on some but not all product labels, while others, such as linalool derivatives linalyl acetate and linalyl anthranilate, were not listed on any product label.

Source: EWG analysis of product labels and tests commissioned by the Campaign for Safe Cosmetics.

Note: Products purchased in Canada are highlighted in red.
SECTION 3: HORMONE DISRUPTORS

A significant number of industrial chemicals, including some in fragrances, can act as hormone disruptors by interfering with the production, release, transport, metabolism and binding of hormones to their targets in the body (Gray 2009; Rudel 2007).

The greatest concern is that these chemicals, through their ability to mimic or disrupt natural estrogen, testosterone and thyroid pathways, may impair basic body functions like tissue growth and repair that are normally regulated by natural hormone signaling (Soto 2009). Some hormone disruptors can prevent the action of naturally occurring hormones and interfere with the endocrine system. Some can also act as hormone mimickers that simulate the activity of hormones, such as estrogen, and send a hormone-like signal at the wrong time and to the wrong tissues. Depending on the dose and timing, exposure to hormone disruptors has been linked to a wide range of health problems (Heindel 2009), including an increased risk of cancer, especially breast (Breast Cancer Fund 2008) and prostate (Prins 2008) cancers; reproductive toxicity and effects on the developing fetus; early puberty (Caserta 2008); infertility (Guidice 2006); and predisposition to metabolic disease such as thyroid problems (Jugan 2010) or obesity (Hotchkiss 2008). Certain hormone disruptors can also impact the optimum thyroid levels crucial to normal brain development and growth in the fetus, infants and young children (Schmutzler 2007).

Recent research has clearly demonstrated that even at low doses, exposure to hormonal disruptors during susceptible periods can have drastic consequences for health later in life. Scientists are especially concerned about the impact of hormone-disrupting chemicals during critical windows of development, such as fetal development (Breast Cancer Fund 2008).

However, further research is needed to investigate the connections between endocrine disruptors and adverse health effects (Charles 2009). Scientists are still trying to understand the human health implication of lifelong, cumulative exposure to mixtures of hormonally active chemicals. Unfortunately, the evidence available to-date is dominated by laboratory studies, known as “in vitro assays,” which focus on interactions between chemicals and hormone receptors in cells grown in laboratory cultures. A smaller number of “in vivo” studies involving laboratory animals have investigated the effects of these potential hormone disruptors on living creatures. Even fewer analyses explore the possible impact of these chemicals on the human hormone system and hormone-responsive organs at current levels of exposure. Some fragrance ingredients have been tested only in laboratory cell cultures.

A growing body of laboratory and epidemiology studies of fragrance chemicals indicates a wide-ranging spectrum of risk, from immune toxicity to effects on the endocrine system. Since the majority of cosmetics ingredients have not undergone a comprehensive panel of toxicity tests, scientists often need to do the detective work in piecing together findings from different experimental systems, making connections among cellular, animal, human and environmental toxicity studies and weighing out the evidence that is currently available.

What Was Found

Ingredients with the potential to act as hormone disruptors were common in the 17 name-brand fragrances assessed in this study:

AXE: Beyond hormone disruptors

Tests found fewer hormone disruptors in AXE Body Spray for Men than in all but one other product. But that doesn’t mean the product is safe. On February 10, 2010 the California Air Resources Board announced that it was issuing a $1.3 million fine to Conopco Inc. (operating under the Unilever name) for contaminating California air with volatile organic compounds (VOCs) each time a young man sprays himself with AXE. Between 2006 and 2008 the company sold 2.8 million products that failed to meet California’s clean air standards.

(Environmental News Service 2010).
- Perfumes, colognes and body sprays contained an average of four potential hormone-disrupting ingredients each.

- A total of 12 such ingredients were found in the tested products. Halle by Halle Berry, Quiksilver and Jennifer Lopez J. Lo Glow each contained seven different potentially hormone-disrupting ingredients, the highest number among tested products.

- Altogether, the 12 ingredients may mimic or interfere with estrogen, male hormones (androgens) and thyroid hormones. Many of the chemicals found can impact more than one of these systems, but 11 of 12 mimic estrogen or display estrogen-like activity in laboratory studies.

Table 2: Hormone-disrupting chemicals in popular perfumes, colognes and body sprays

<table>
<thead>
<tr>
<th>Perfume/Perfuming Product</th>
<th>Total Hormone Disrupting Chemicals</th>
<th>Benzophenone-1</th>
<th>Benzophenone-2</th>
<th>Benzyl Benzoate</th>
<th>Benzyl Salicylate</th>
<th>BHT</th>
<th>Diethyl Phthalate</th>
<th>Galaxolide</th>
<th>Lilial</th>
<th>Musk Ketone</th>
<th>Octinoxate</th>
<th>Oxybenzone</th>
<th>Tonalide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halle by Halle Berry</td>
<td>7</td>
<td>●</td>
</tr>
<tr>
<td>Quiksilver (for men)</td>
<td>7</td>
<td>●</td>
</tr>
<tr>
<td>Jennifer Lopez J. Lo Glow</td>
<td>7</td>
<td>●</td>
</tr>
<tr>
<td>American Eagle Seventy Seven</td>
<td>6</td>
<td>●</td>
</tr>
<tr>
<td>Bath & Body Works Japanese Cherry Blossom</td>
<td>6</td>
<td>●</td>
</tr>
<tr>
<td>Calvin Klein Eternity (for women)</td>
<td>6</td>
<td>●</td>
</tr>
<tr>
<td>Calvin Klein Eternity (for men)</td>
<td>5</td>
<td>●</td>
</tr>
<tr>
<td>Coco Mademoiselle Chanel</td>
<td>5</td>
<td>●</td>
</tr>
<tr>
<td>Giorgio Armani Acqua Di Gio</td>
<td>5</td>
<td>●</td>
</tr>
<tr>
<td>Victoria’s Secret Dream Angels Heavenly</td>
<td>4</td>
<td>●</td>
</tr>
<tr>
<td>Britney Spears Curious</td>
<td>4</td>
<td>●</td>
</tr>
<tr>
<td>Clinique Happy</td>
<td>3</td>
<td>●</td>
</tr>
<tr>
<td>Hannah Montana Secret Celebrity</td>
<td>3</td>
<td>●</td>
</tr>
<tr>
<td>Dolce & Gabbana Light Blue</td>
<td>3</td>
<td>●</td>
</tr>
<tr>
<td>Old Spice After Hours Body Spray</td>
<td>2</td>
<td>●</td>
</tr>
<tr>
<td>Abercrombie & Fitch Fierce</td>
<td>1</td>
<td>●</td>
</tr>
<tr>
<td>AXE Bodyspray For Men - Shock</td>
<td>1</td>
<td>●</td>
</tr>
</tbody>
</table>

Detected in product testing or listed on ingredient label

Source: EWG analysis of product labels and tests commissioned by the Campaign for Safe Cosmetics, and results of hormone system studies in the open scientific literature

Note: Products purchased in Canada are highlighted in red.
The analysis below reviews in detail available studies on hormone disruption conducted for chemicals found in the 17 products tested in this study. Importantly, for many ingredients in the tested products, there is almost no safety information in the public domain. For example, PubMed, the federal government’s database of peer-reviewed scientific research, contains no toxicity studies for the sunscreen ingredient diethylamino hydroxybenzoyl hexyl benzoate, known under a trade name Uvinul A Plus, or the preservative tetradibutyl pentaerithrityl hydroxyhydrocinnamate, known under the trade name Irganox1010. The complete list of ingredients with potential endocrine-disrupting properties may, in fact, be much larger than the 12 discussed below.

- **Octinoxate (octyl methoxycinnamate) - found in 7 products tested for this report** - is a sunscreen ingredient and UV absorber that has been linked with estrogenic activity in vitro and in vivo. In laboratory studies with cultured cells, octinoxate binds to and stimulates the human estrogen receptor (Gomez 2005). Estrogenic effects of octinoxate on fish have also been reported (Inui 2003). In studies with laboratory animals, exposure to octinoxate increases the weight of the uterus, a hallmark of estrogenic response and an indicator of possible adverse long-term health effects in humans and wildlife (Schlumph 2001; 2003). Octinoxate has also been shown to disrupt the function of hypothalamo-pituitary-thyroid endocrine pathway and to suppress the levels of thyroid hormones in laboratory animals (Schmutzler 2004), indicating that it is likely to be a thyroid toxicant as well (Klammer 2007).

- **Oxybenzone (benzophenone-3) - found in 1 product tested for this report** - is a sunscreen ingredient that has been reported to act as an endocrine disruptor based on studies with cultured cells and with laboratory animals (Kunz 2006; Nakagawa 2002; NTP 1992). Oxybenzone stimulates estrogen receptors and increases the weight of the uterus in exposed rodents (Schlumpf 2004). It has also been shown to antagonize androgen (male hormone) receptor function in human cancer cells (Ma 2003). A study with cultured cells also found that oxybenzone increased production of the stress hormone corticosterone from adrenal gland cells (Ziolkowska 2006). In people, higher maternal exposures to oxybenzone have been linked to decreased birth weight in baby girls (Wolff 2008).

- **Benzophenone-1 - found in 1 product tested for this report** - is a sunscreen ingredient that has been shown to have both estrogenic and androgenic properties, as demonstrated by its ability to bind and stimulate the human estrogen receptor and to increase uterine weight in laboratory animals (Suzuki 2005; Schlumpf 2004).

- **Benzophenone-2 - found in 1 product tested for this report** - is a sunscreen ingredient that interferes with thyroid function in laboratory animals (Schmutzler 2007; Schlecht 2006). It also demonstrates estrogenic activity in studies with laboratory animals and in studies of cultured cells (Schlumpf 2004; Schlecht 2004).

- **Diethyl phthalate - found in 12 products tested for this report** - is a fragrance solvent that has been associated with adverse effects on the development of the reproductive system in epidemiological studies. Although research is not yet definitive on the mechanism of DEP toxicity, findings from human studies raise strong concerns about the safety of DEP exposures (Swan 2008). (See Appendix B)
- **Butylated hydroxytoluene (BHT)** - *found in 6 products tested for this report* - is a preservative and stabilizer. Two studies have linked BHT with adverse effects on the thyroid (Sondergaard 1982) and possible thyroid carcinogenesis (Ito 1985).

- **Synthetic musks Galaxolide, Tonalide and musk ketone** - *found in 15, 5, and 1 product tested, respectively for this report* - have not yet been tested in long-term studies that could specifically address effects on the endocrine system (van der Berg 2008). Significant data gaps and lack of adequate animal or human studies makes definitive characterization of endocrine toxicity a challenge. However, a substantial body of data from laboratory studies with cell culture models indicates that these chemicals can affect the function of the human estrogen receptor as well as receptors for other hormones such as androgen and progesterone and stimulate the growth of hormone-sensitive cancer cells in vitro (Schreurs 2005). Both Galaxolide and Tonalide musks contaminate people and the environment worldwide, and have been associated with toxicity to the endocrine system (van der Burg 2008). A recent EWG study found both in the cord blood of newborn babies (EWG 2009). (See Appendix C)

- **Benzyl salicylate, benzyl benzoate and scent chemical lilial (butylphenyl methylpropional)** - *found in 8, 6, and 5 products tested respectively for this report* - have demonstrated estrogenic activity in a recent study with human breast cancer cells (Charles 2009).

Table 3:
Twelve fragrance chemicals that may affect sex hormones and the thyroid

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Estrogen</th>
<th>Androgens (male hormones)</th>
<th>Thyroid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octinoxate (octyl methoxycinnamate)</td>
<td>✔️</td>
<td>✔️</td>
<td>*</td>
</tr>
<tr>
<td>Oxybenzone (benzophenone-3)</td>
<td>✔️</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Benzophenone-1</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Benzophenone-2</td>
<td>✔️</td>
<td>✔️</td>
<td>*</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylated hydroxytoluene (BHT)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galaxolide</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Tonalide</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Musk ketone</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl salicylate</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzyl benzoate</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilial (butylphenyl methylpropional)</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✔️ Potential to disrupt the indicated hormone system based on findings from published cell culture studies

* Potential to disrupt the indicated hormone system based on findings from published animal studies

Source: EWG analysis of product labels and tests commissioned by the Campaign for Safe Cosmetics, and results of hormone system studies in the open scientific literature.
SECTION 4: THE SELF-POLICING FRAGRANCE INDUSTRY

Canada does not require manufacturers to systematically test the chemicals in personal care products for safety. After these products are on the market, government product testing is often only done in special circumstances. However, a manufacturer may be requested to supply evidence that a product is safe (Department of Justice Canada 2010). If a product does not comply with the Canadian legislation, the government determines a course of action which may be “voluntary measures, warning letters, import refusal, public advisories, product seizure, and, ultimately, prosecution in the courts” (Health Canada, 2008). A voluntary approach is encouraged and fines are rare (Health Canada 2009b).

Two industry trade associations administer programs that set voluntary standards, which cosmetic companies and fragrance houses can choose to follow – or not. The International Fragrance Association (IFRA) sets standards for chemicals in the “fragrance” component of products, and the Personal Care Product Association’s (PCPC) Cosmetic Ingredient Review (CIR) suggests voluntary standards for other cosmetics ingredients in the United States.

CIR: In the absence of government authority, an industry-funded and self-policing body called the Cosmetic Ingredient Review (CIR) Panel vouches for the safety of cosmetic ingredients. In the 30 years since its creation, this panel has only evaluated 11 per cent of the ingredients used in cosmetics (EWG 2005). The CIR sets voluntary guidelines and does not actively monitor products for compliance. Even for the few chemicals it does evaluate, the CIR rarely evaluates cumulative effects of exposures to toxic cosmetic ingredients over a lifetime; the aggregate exposure of cosmetic ingredients in combination with other toxic chemical exposures; the timing of exposure which can magnify the harm, particularly for infants and young children; or worker exposures in beauty salons and manufacturing plants.

The CIR has assessed only 19 of the 91 ingredients listed on labels or found in testing for the 17 products assessed in this study.

IFRA: IFRA sets voluntary standards for fragrance houses and the manufacturers of fragrance ingredients. The compliance program, initiated in 2007, tests fragrance samples for prohibited ingredients (the program historically has only looked at prohibited ingredients and is now beginning to look at restricted ingredients as well). If there are violations, the supplier’s name is posted on IFRA’s website as not complying with the IFRA Code of Practice. IFRA has banned or restricted approximately 150 ingredients from fragrance (IFRA 2010).

IFRA’s recommendations are based on research conducted by the Research Institute for Fragrance Materials (RIFM). IFRA members are given access to a database generated by RIFM that houses safety information – and testing gaps – on the more than 3,100 fragrance ingredients used by IFRA members.

IFRA has assessed only 22 of the 91 ingredients listed on labels or found in testing for the 17 products assessed in this study.
The good news, however, is that some companies agree that it is prudent to restrict or eliminate certain hazardous chemicals from fragrances, such as musks and phthalates. For example, The Body Shop and Boots have agreed not to use artificial musks and phthalates in their products (Boots 2005; Body Shop 2008). While these are only two of many chemicals of concern used in fragrance, this is a step in the right direction that the whole industry should follow. More than 200 companies are also fully disclosing all the ingredients – including fragrance – on their ingredient labels, as part of their commitment to the Compact for Safe Cosmetics, a pledge of safety and transparency. (See Appendix E for a list of these companies.)

SECTION 5: SAFER PRODUCTS AND SMARTER LAWS

Products we put on our bodies should not contain chemicals that could damage our health. Yet due to gaping holes in federal law, it is perfectly legal for perfumes, colognes, body lotions, shampoos and other cosmetics and personal care products to contain sensitizers, hormone disruptors, reproductive toxicants, carcinogens and other toxic chemicals linked to harmful health effects.

In Canada, cosmetics are regulated under the Cosmetic Regulations of the Food and Drugs Act. Currently, under this legislation, cosmetics and personal care products are allowed on the market prior to manufacturers telling the federal government what is in them. In fact, manufacturers and importers are only required to submit a list of ingredients and their concentrations to Health Canada up to 10 days after the product is on the market (Department of Justice Canada 2010). When disclosure finally does take place, loopholes fail to require reporting on byproducts of manufacturing, also called impurities. The public also has no way of knowing all of the intentional ingredients a product contains because of the ability to cloak substances under the term “parfum”.

The lack of full disclosure regarding the ingredients that make up fragrance is only one of the problems associated with the cosmetics industry. While the Government of Canada has a list of restricted and prohibited ingredients in Canadian cosmetics that helps manufacturers make sure that they are not selling products that will cause harm (Health Canada 2009a), the legal authority of this list is unclear and any prohibitions do not pertain to impurities (or byproducts). Furthermore, there are more than 1,000 chemicals, including carcinogens, mutagens, and reproductive toxicants, that are legally banned in European cosmetics (European Parliament and Council Directive 2003/15/EC and Cosing 2009), many of which are not on the Canadian Cosmetic Ingredient Hotlist.

Additionally, regulatory and standard-setting agencies do not often consider the risk to human health of cumulative exposures to the same chemical from multiple sources, nor do they consider the exposures to multiple chemicals from multiple sources.

As our test results show, short of sending your favourite perfume to a lab for testing, shoppers have no way of knowing exactly which of the 3,100 fragrance ingredients may be hiding in their beauty products or even in their child’s baby shampoo. This study focused on several categories of chemicals – specifically volatile compounds, semi-volatile compounds and synthetic musks. The laboratory analyses, while thorough, were not exhaustive, which means that additional chemicals of concern may also be present in the tested products.
Campaign for Safe Cosmetics has documented numerous other products that contain harmful ingredients and unlabelled contaminants, including lipsticks, nail polish, baby shampoo, sunscreen and others (Campaign for Safe Cosmetics 2010).

Canada Needs a Strengthened Cosmetic Ingredient Hotlist and Improved Public Disclosure

Comprehensive federal safe cosmetics legislation is necessary to give Health Canada the authority and resources it needs to ensure cosmetics are free of toxic chemicals. New health-protective policies are needed to protect the safety and health of Canadians from toxic, untested and unregulated chemicals in the cosmetics and personal care products we buy every day and should include:

1) A European-style ban on harmful and risky substances. Canada needs to follow Europe by having a list of prohibited or restricted substances that has clear legal authority. In other words, the law should be written such that it is clear that using prohibited substances on the Hotlist in personal care products or improperly using restricted substances on the Hotlist in personal care products is illegal in Canada. Additionally, the Cosmetic Ingredient Hotlist should be expanded to include a ban on all substances banned in Europe, and substances known or suspected to be carcinogenic, mutagenic, reproductive toxicants, developmental toxicants, neurotoxicants, and hormone disruptors.

2) Complete and prior public disclosure of materials in the products. The government has to know about everything in cosmetics and personal care products being put on store shelves before they get there, and the public has the right to know everything that is contained in products that they put on their bodies. Manufacturers should be required to disclose all substances, intentional ingredients (including fragrance substances) and unintentional ingredients (including impurities), in their products without exception, and this information should be found on labels and be freely available online before products hit the market.

Be Just Beautiful

One-time use of fragrances highlighted in this report may not cause harm. But cosmetics and personal care products are used repeatedly and in combination with other consumer products that can also contain hazardous chemicals. Research by government agencies, academia and independent organizations finds widespread human exposure to multiple chemicals (CDC 2009); we are all regularly exposed to various toxic chemicals from our air, water, food and household products. People can also be exposed to the same chemical from multiple sources. Here’s what you can do to protect yourself, your loved ones and future generations from unnecessary exposure to toxic chemicals in personal care products.
1) **Choose products with no added fragrance.** By choosing products without fragrance, you can reduce toxic chemical exposures for yourself and your family. It is important to read ingredient labels, because even products advertised as “fragrance free” may contain a masking fragrance. Visit our website, www.environmentaldefence.ca, for tips and resources to help you find safer products, and to link to EWG’s Skin Deep: www.safecosmetics.org.

2) **Less is better.** If you are very attached to your fragrance, consider eliminating other fragranced products from your routine, and using fragrance less often.

3) **Help pass smarter, health-protective laws.** Buying safer, fragrance-free products is a great start, but we can’t just shop our way out of this problem. In order for safer products to be widely available and affordable for everyone, we must pass laws that shift the entire industry to non-toxic ingredients and safer production. Ask that Health Canada be given the authority and resources it needs to ensure the safety of cosmetics by visiting www.environmentaldefence.ca.

4) **Demand that cosmetics companies fully disclose ingredients and support those that do.** Tell cosmetics companies that you want them to fully disclose the ingredients in the products they make – including the chemicals that are hiding under the term “fragrance.” You can find companies’ toll-free customer hotlines on product packages and online, and calling them only takes a moment. We’ve provided some helpful talking points on our fragrance report fact sheet, which you can find online at www.environmentaldefence.ca. Companies need to hear from you, the potential customer – you have the power to vote with your dollars! In the meantime, support companies that fully disclose ingredients.
APPENDIX A: RESEARCH METHODOLOGY

The Campaign for Safe Cosmetics commissioned tests of 17 brand-name fragrance products targeting a range of chemicals, including volatile and semi-volatile organic compounds.

In the United States, 13 scent products were purchased: 10 through Amazon.com, two at Long’s Drugs/CVS in Berkeley, California and one through Abercrombie & Fitch’s website. Four products were purchased in Ottawa, Ontario, Canada: one at American Eagle Outfitters, two at Sephora and one at Sears.

Unopened products were sent to Analytical Sciences, an independent laboratory in Petaluma, California, for analysis. The testing methodology is described below.

Methodology for laboratory analysis

The laboratory applied slight modifications to standard United States Environmental Protection Agency methods EPA 8260 (volatiles) and EPA 8270 (semi-volatiles) for lower and higher boiling point chemical target compounds. For synthetic musks the following paper was used as a guide to develop a specific sensitive gas chromatography mass spectroscopy method: A.M. Peck, K.C. Hornbuckle, Environ. Sci. Technol., 38, p367-372, 2004.

Volatile and semi-volatile organic compounds: Fragrance GC/MS methods:
A measured amount of the commercial product was diluted into a specific amount of solvent and mixed well. One to five microliters of the solvent was introduced into the gas chromatography mass spectrometer by either a purge and trap technique or by direct injection. The gas chromatographs were programmed to separate and identify either volatile organic compounds (boiling point less than 150 degrees C) or semi-volatile organic compounds (boiling point greater than 150 degrees C).

The mass spectrometers were programmed and optimized to identify priority pollutant compounds listed by the United States Environmental Protection Agency. Over 150 chemical compounds were investigated. Commonly recognized commercial standards were used to optimize the gas chromatograph and mass spectrometer. The compounds investigated are listed in EPA method 8260 and 8270.

Significant chromatographic peaks that were not on the specific target list were identified by a computerized search of the National Bureau of Standards (NBS) Mass Spectral Database containing over 100,000 compounds, by comparing significant peaks identified in testing to the NBS database. Chemicals identified by the NBS library search are considered to be “tentatively” identified compared to other identifications from this test program that are confirmed with a specific standard matching the exact mass spectral pattern and the chromatographic retention time for a compound.

Synthetic musks:
500 milligrams of each sample were weighed to the nearest milligram and diluted into exactly 5 milliliters of hexane. The diluted samples were mixed well and then injected into a very sensitive gas chromatograph mass spectrometer (Agilent 7890 / 5975C) optimized to detect six musk target compounds using
selective ion monitoring to achieve the lowest detection limits possible. Standards for the following six target musks were utilized to optimize and calibrate the GC/MS instrument: Cashmeran (DPMI), Traseolide (ATII), Galaxolide (HHCB), Tonalide (AHTN), Musk Xylene, Musk Ketone. Results for detected musks were reported in units of parts per million (ug/gm or ppm). When necessary, dilutions and reruns were made to move detected compounds into the linear calibration range of the instrument. When dilutions were used for quantitation, detection limits were increased by the dilution factor.

Methodology for data analysis

The Environmental Working Group analyzed 91 ingredients in 17 tested products by (1) assessing the ingredients against definitive government, academic and industry datasets on chemical toxicity and regulation; and (2) reviewing public scientific literature available from the fragrance and cosmetic industry or contained in the federal government’s PubMed scientific library.

Definitive toxicity and regulatory databases had been previously compiled by EWG researchers in EWG’s Skin Deep cosmetic safety database (www.cosmeticdatabase.com). These databases summarize scientific information on known and probable carcinogens; reproductive and developmental toxicants; substances harmful to the nervous, immune and endocrine systems; bioaccumulative chemicals that persist in the human body; substances toxic to the environment; chemicals restricted for use in cosmetics and personal care products; and chemicals regulated by various government agencies. Chemical hazard information compiled from these databases serves as the basis for product and ingredient scoring as described on the Skin Deep About page (www.cosmeticsdatabase.com/about.php).

EWG imported data on all ingredients in the tested fragrance products (listed on the label and identified through testing) into EWG’s Skin Deep database, and then individually reviewed the resulting toxicity profiles produced by linking Skin Deep’s toxicity and regulatory databases to the product ingredients.

EWG relied on three primary sources to identify the range of sensitizers in tested products: (1) information published on the website of the International Fragrance Association, (2) peer-reviewed scientific literature and (3) the European Commission’s Scientific Committee on Cosmetic Products and Non-Food Products (SCCNFP) list of common allergenic substances (publication SCCNFP/0017/98). The EU list includes 24 chemicals and two botanical preparations that are allergens or that form allergenic oxidation products upon storage. Twenty-two of these EU-recognized 26 sensitizers were found in the products tested in this study. EWG identified two additional ingredients as potential sensitizers, linalyl acetate and linalyl anthranilate, which are derivatives of the known sensitizer linalool (also found in the products tested). In total, EWG identified 24 different sensitizers in the tested products.

For identification of potential hormonal disruptors in tested products, EWG relied on peer-reviewed scientific publications. EWG identified an initial list of relevant references from the Registry of Toxic Effects of Chemical Substances (RTECS) databases and from PubMed searches. For the 12 ingredients identified as having a potential to act as hormonal disruptors, EWG selected 20 publications from the open scientific literature as offering the best evidence currently available on endocrine toxicity for fragrance ingredients.

To determine the number of ingredients in the tested products that are associated with voluntary industry standards in the U.S., EWG analyzed the list of ingredients in fragrance products included in this study.
against the list of cosmetics and personal care product chemicals assessed by three industry organizations: the Cosmetic Ingredient Review (CIR) panel; the International Fragrance Association (IFRA) and the Research Institute for Fragrance Materials (RIFM). Analysis of CIR-reviewed ingredients was based on the official CIR publication on its website (www.cir-safety.org). Analysis of IFRA-reviewed ingredients was based on the list of 174 substances that have been banned or restricted by IFRA for use in fragrance products by IFRA-member companies, as listed on its website (www.ifraorg.org). The list of studies conducted by the RIFM is not available on its website (www.rifm.org) so EWG conducted a PubMed search for the query “Research Institute for Fragrance Materials” to determine which fragrance ingredients RIFM has assessed. For the purposes of this analysis, when an ingredient was not listed on the IFRA website, but had a corresponding assessment from the RIFM Expert Panel published in the open scientific literature, we considered this ingredient in our database to have been assessed by IFRA. Assessments considered in this analysis were those published in the past 25 years.

Following this analysis, EWG identified a total of 35 ingredients in the tested products that have not been assessed by CIR, IFRA or RIFM. Eleven of these ingredients are listed on the label, including five sunscreen chemicals whose safety when inhaled from perfume and cologne sprays has not been assessed. Twenty-five unassessed ingredients were found in laboratory tests but were not disclosed on the label of at least one product assessed in this study.

EWG conducted a thorough search for safety information on unassessed ingredients, including review of government databases and peer-reviewed publications indexed in PubMed. Of the 25 ingredients not disclosed on the label, two ingredients are listed by FDA in the list of substances Generally Recognized As Safe (GRAS) in food for human consumption, while an additional 13 ingredients are listed by FDA as synthetic flavouring substances and adjuvants permitted for direct addition to food. Many of these have not been assessed for safety in cosmetics. Of note, many of the ingredients had minimal toxicity information in the publicly available literature, even for bioaccumulative and potentially endocrine-disrupting chemicals such as synthetic musks.
APPENDIX B: DIETHYL PHTHALATE (DEP) SCIENCE REVIEW

Diethyl phthalate (DEP), a synthetic solvent common in fragrance and other personal care products (Hubinger 2006), is a ubiquitous pollutant of the human body, found in 97 per cent of Americans tested by the U.S. Centers for Disease Control and Prevention (Silva 2004). A series of recent epidemiological studies has associated DEP with a range of health problems, including sperm damage in men (Hauser 2008).

Testing by the Campaign for Safe Cosmetics found DEP in 12 of 17 fragrance products tested, in widely ranging concentrations.

- Tests detected higher levels of DEP in the Calvin Klein brand than any other brand assessed, with Eternity for Women and Eternity for Men containing 32,000 and 19,000 parts per million (ppm) of DEP, far above the next highest level (Victoria’s Secret Dream Angels Heavenly, at 15,000 ppm).

- Four of five products for men contained DEP, at levels ranging between 130 ppm (Old Spice Body Spray) and 19,000 ppm (Calvin Klein Eternity for Men). Of products for men, only AXE Deodorant Body Spray (Shock) contained no detectable residues of DEP.

- No detectable amounts of DEP were found in fragrances sold under five brand names: AXE, Bath & Body Works, Clinique, Dolce & Gabbana and Giorgio Armani.

Health concerns related to DEP

In human epidemiological studies, DEP exposure has been linked to adverse effects on the reproductive system:

- In a study of 168 men recruited from the general population, exposure to DEP was associated with DNA damage in human sperm (Duty 2003).

- Findings from the multi-center Study for Future Families established a strong correlation between a mother’s exposure to DEP and other phthalates during her pregnancy and changes to the development of her baby boy’s genitals (Swan 2005).

- In a study of 130 Danish and Finish infants, scientists noted an association between the levels of DEP metabolite in the mother’s breast milk and alterations in levels of male sex hormones in the baby boys (Main 2006).
• In a group of 379 men seeking care at an infertility clinic, exposure to two phthalates, DEP and DEHP, was correlated to DNA damage in sperm (Hauser 2007).

• A recent study in Mexico associated high levels of urinary DEP and an elevated risk of breast cancer (Lopez-Carrillo 2010).

• A study of children ages 4 to 9 years linked children’s behavior problems to higher maternal exposure to low molecular weight phthalates such as DEP (Engel 2010).

Although the human health studies summarized above are small-scale, pilot investigations that need to be confirmed by follow-up research, their results suggest that exposure to DEP may be linked to adverse human health effects. In all of these studies, scientists compare the risk or the incidence of certain health problems with the levels of phthalate metabolites detected in study subjects’ urine (Silva 2003). This type of study design does not allow scientists to establish definitively if DEP is the cause of the health problems, but it does provide a highly suggestive correlation.

Unlike other phthalates such as di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP), DEP has not shown significant toxicity in any animal model, despite extensive testing (Api 2001). Studies with laboratory animals where mice and rats have been fed DEP in their diets did not detect anatomical changes in the male reproductive system, as established for other phthalates (Howdeshell 2008). However, at the highest levels of exposure, DEP has been linked to liver abnormalities, elevated cholesterol (Sonde 2000) and birth defects (ATSDR 1995). A study published in 2009 reported that a metabolite of DEP, monoethyl phthalate, lowered the sperm counts and sperm motility in exposed animals (Kwack 2009).

Scientists have not as yet determined the reason for the difference between DEP effects in humans and in laboratory animals. Importantly, human exposure is primarily dermal (through the skin), while animal testing is oral (in the diet). These differences in exposure route may have a significant effect on toxicity and genetic interspecies variations may also be a contributing factor (Swan 2008).

DEP is found in people’s bodies

Numerous studies have detected the metabolite of DEP (known as MEP) in people’s urine – in males and females of all ages (Silva 2004). Researchers have also detected DEP in human amniotic fluid samples collected during the second trimester of pregnancy, indicating that the fetus is exposed to phthalates during critical windows of hormone-driven development (Silva 2004).

How people are exposed to DEP

DEP can enter the body through skin contact, inhalation or ingestion (Adibi 2003). A survey of 406 men found that those who had used cologne or aftershave in the previous 48 hours had higher urinary levels of breakdown products of DEP than those who did not (Duty 2005). More than 90 per cent of 163 babies
studied had breakdown products of DEP and other phthalates in their urine. The infants’ phthalate levels correlated with their mothers’ reported use of baby lotion, powder and shampoo (Sathyanarayaya 2008).

Reviews of DEP safety

Some phthalates, but not DEP, are banned in the European Union and from toys in the United States. The International Fragrance Association and the Cosmetic Ingredient Review panel take the position that DEP is safe for use in fragrance and cosmetics (CIR 2009a; CIR 2009b; IFRA 2009). These organizations’ assessment of DEP safety has not as yet taken into consideration the recent findings from human epidemiological studies that suggest increased risk for reproductive damage at current levels of exposure.

The Environmental Protection Agency lists DEP as a priority pollutant under the Clean Water Act (USEPA 2002) and DEP toxicity to aquatic species has been reported (Ghorpade 2002; Liu 2002). In late 2009, EPA identified phthalates as one of six chemical groups to be considered for regulation as potentially dangerous substances (USEPA 2009b).

Is DEP in fragrance safe?

The verdict is still out on the safety of DEP. However, the growing body of evidence from human studies suggests that manufacturers should consider using alternative ingredients until further research proves DEP safe. Importantly, our analysis shows that it is possible to make fragrance products without DEP.
APPENDIX C: SCIENCE REVIEW FOR MUSK FRAGRANCES IDENTIFIED IN TESTED PRODUCTS

Synthetic musks are a large, poorly-studied class of chemicals added as scents to cosmetics, including perfumes, lotions and many other personal care products. The few available studies suggest some of these compounds may disrupt hormone systems or trigger skin sensitization when exposed to UV light (photosensitization) (Parker 1986).

Product tests initiated by the Campaign for Safe Cosmetics revealed the widespread use of synthetic musks in perfume, cologne and body sprays. Some of the same musks identified in fragrances have also been found in the cord blood of newborn babies, as well as in blood, breast milk and body fat (EWG 2009).

Testing by the Campaign found synthetic musks in all 17 fragrance products tested.

- Five different synthetic musk chemicals were detected in the 17 products altogether, including three that have been detected in umbilical cord blood from newborn babies: musk ketone, Galaxolide and Tonalide (TNO 2005; EWG 2009).

- Twelve products contained more than one synthetic musk. Two products each contained four different synthetic musks: Quiksilver and American Eagle Seventy Seven (both purchased in Canada).

- Galaxolide, in 15 of 17 products, was the most common of all the musks detected. Ethylene brassylate was next, found in 10 products. Studies show that Galaxolide contaminates cord blood from U.S. newborns and may interfere with estrogen in the body. The toxicity of ethylene brassylate and its potential to contaminate the human body is largely unknown. Only three studies in the open scientific literature (PubMed library) mention the chemical.

Two types of musks have been historically used in fragrances, cosmetics and personal care products: nitromusks and polycyclic musks. Nitromusks, such as musk ketone, are synthetic scent chemicals whose structure contains nitrogen. Polycyclic musks such as Galaxolide and Tonalide contain more than one carbon ring (“cycle”) in their structure. New types of synthetic musks are developed frequently and substituted for older nitromusks that are being banned or phased out on grounds of toxicity (USEPA 2007; Hutter 2009). Almost no studies exist for some musks now commonly used in fragrance, including ethylene brassylate.

Musk fragrances are produced in high volumes. Industry reported manufacturing or importing between 1 and 10 million pounds of Galaxolide in 2006 alone (USEPA 2009a). For Tonalide, industry reports indicate that between 1 and 10 million pounds were imported or manufactured in 1998, the last year for which reports are available (USEPA 2009a). Due to the ubiquity of these chemicals, environmental studies from areas as diverse as the Great Lakes, Germany and China document widespread Galaxolide and Tonalide contamination of both fresh and marine water samples, air, wastewater and sludge (Chen 2007; Rudel 2006).
Studies report Galaxolide and Tonalide contamination in many species of wildlife: harbor seals, California sea lions, river otters, bottlenose dolphins, striped dolphins, pygmy sperm whales, Atlantic sharpnose shark, mink, common merganser, greater and lesser scaup, mallard and Atlantic salmon (Kannan 2005).

Types of musks found in the tested products

All 17 fragrances included at least one of the polycyclic musks – Galaxolide, Tonalide, Cashmeran – as well as the macrocyclic musk ethylene brassylate.

Human and environmental health concerns related to musks

Little toxicological information is available about musks currently in commerce. One report links Tonalide to liver toxicity (Steenberg 1999). But other reports say Galaxolide and Tonalide have low acute toxicity. For lack of currently available adverse evidence, in 2008, the European Union allowed continued use of both musks in consumer products (Summary Risk Assessment 2008). However, a number of in vitro studies with cultured cells suggest that these musks may affect the endocrine system by interfering with estrogen, androgen and/or progesterone hormone receptors (Seinen 1999; Schreurs 2005). Tonalide has been identified as a photosensitizer, a chemical that becomes more toxic when exposed to sunlight on the skin (EU 2008). A number of studies have found musks toxic to aquatic life (Luckenbach 2005; Snell 2009).

What does this mean for people who use fragranced products?

Synthetic musk compounds are persistent environmental pollutants in aquatic environments. Both nitro-musks and polycyclic musks such as Galaxolide and Tonalide can accumulate in the food chain (Dietrich 2004). The combination of widespread human exposure, environmental contamination and persistence raises questions about the safety of their widespread use in fragranced products. Reducing the volume of fragranced products in daily use could make a significant difference to pollution in people and the environment (Roosens 2007).

Studies on toxicity of synthetic musks Galaxolide and Tonalide:

Synthetic musk compounds are persistent environmental pollutants in aquatic environments. Both nitro-musks and polycyclic musks such as Galaxolide and Tonalide can accumulate in the food chain (Dietrich 2004). The combination of widespread human exposure, environmental contamination and persistence raises questions about the safety of their widespread use in fragranced products. Reducing the volume of fragranced products in daily use could make a significant difference to pollution in people and the environment (Roosens 2007).
Endocrine disruption potential

- Galaxolide and Tonalide can bind to and stimulate human estrogen receptor when tested by in vitro methods (Seinen 1999). Both musks were also shown to affect the androgen and progesterone receptors in reporter gene bioassays (Schreurs 2005).
- Tonalide has been reported to increase the proliferation of estrogen-responsive human breast cancer cells (Bitsch 2002).
- In an assay with genetically modified fish, Galaxolide and Tonalide were shown to exert antiestrogenic effects (Schreurs 2004).

Environmental toxicity

- Musks have been shown to have high acute toxicity to fish, especially in the early life stages (Yamauchi 2008). Musks also interfere with important detoxification enzymes in fish (Schnell 2009).
- Low concentrations of Tonalide, Galaxolide and other musks strongly inhibited larval development in common species of crustaceans (Wollenberger 2003).
- Exposure of marine mussels to musks reduced the mussel’s ability to protect itself from pollutants (Luckenbach 2005) and suppressed the growth rate in the larvae and juveniles (Gooding 2006).

Musk have been found in people’s bodies, including newborns

EWG tests of umbilical cord blood found 7 out of 10 babies had been born with Tonalide and/or Galaxolide in their blood. Six of 10 samples contained Galaxolide, four of 10 contained Tonalide and three contained both musks (EWG 2009).

Several studies have linked personal care products and elevated body levels of different musks. A 1996 study found Galaxolide and Tonalide in body fat and breast milk after use of cosmetics and detergents (Rimkus 1996). Another study detected Galaxolide in the blood of 91 per cent of Austrian students. A survey on routes of exposure linked body lotion to higher Galaxolide concentrations (Hutter 2005; 2009). A survey of 101 women found that frequent use of perfume during pregnancy resulted in elevated concentrations of Galaxolide in breast milk (Lignell 2008).

Blood tests conducted in Austria detected Galaxolide in 89 per cent of 53 women over the age of 50 and associated Galaxolide concentration with frequent use of perfumes, deodorants and shampoos. In their publication, the Austrian researchers posit: “These findings could be due to the higher use of lotions and crèmes on face and hands and a more frequent use of skin care products because older persons reported more frequently dry skin. In addition, physiological aging related changes might be responsible for higher dermal absorption of synthetic musks.” (Hutter 2010)
APPENDIX D: SECRET CHEMICALS DETECTED IN PRODUCT TESTING

Secret ingredients (found in product testing; not listed on labels):

Source: Environmental Working Group analysis of product labels, product tests commissioned by the Campaign for Safe Cosmetics, and the open scientific literature

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>How many products contain it?</th>
<th>What is this chemical?</th>
<th>Is public safety data available?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedione</td>
<td>16</td>
<td>Synthetic fragrance ingredient, one of the most commonly used in perfumes and colognes, with a jasmine smell. More than 1,000 metric tons of hedione is used every year worldwide.</td>
<td>Only one published toxicity study is found in the online science library PubMed, a developmental toxicity study conducted by the New Jersey-based Research Institute for Fragrance Materials, which reported no gross malformations of rat pups exposed to high doses in utero (Politano 2008).</td>
</tr>
<tr>
<td>Myrcene</td>
<td>16</td>
<td>A naturally occurring and synthetically produced scent and flavouring chemical, used extensively as an intermediate for production of many fragrance ingredients.</td>
<td>Ingredient listed in the FDA’s “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Myrcene, especially when oxidized upon air exposure, can be an irritant and a weak sensitizer. Recently completed 2-year study by the National Toxicology Panel found that myrcene had carcinogenic activity in laboratory animals (Kohicheskia 2007; Matura 2005; NTP 2009).</td>
</tr>
<tr>
<td>Galaxolide</td>
<td>15</td>
<td>A synthetic polycyclic musk, also known by its chemical name abbreviation, HHCB.</td>
<td>Studies of Galaxolide are limited to laboratory hormone assays and tests for the presence of the chemical in the environment and people. Galaxolide has been reported to interfere with estrogen and androgen (male) hormones. Galaxolide is bio-accumulative (builds up in the adipose tissue) and has been found in the bodies of humans, in breast milk and in wildlife (van der Burg 2008).</td>
</tr>
<tr>
<td>3,7-dimethyl-1,3,7-octatriene</td>
<td>14</td>
<td>A variant (isomer) of the fragrance and flavouring ingredient ocimene, a naturally-occurring scent chemical found in essential oils and produced by industrial chemical synthesis.</td>
<td>No public safety data identified. Ingredient listed in the FDA’s list of “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>Linalyl anthranilate</td>
<td>13</td>
<td>An ester of the common fragrance ingredient and known sensitizer linalool.</td>
<td>Ingredient listed in the FDA’s “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Public safety data limited to sensitization studies. Oxidation of linalool esters upon storage and air exposure leads to formation of allergic oxidation products (Hagvall 2008).</td>
</tr>
<tr>
<td>Ingredient</td>
<td>How many products contain it?</td>
<td>What is this chemical?</td>
<td>Is public safety data available?</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>12</td>
<td>A fragrance solvent commonly used at high concentrations in perfumes and colognes.</td>
<td>Diethyl phthalate has been tested for reproductive system impacts and estrogenic activity. The chemical is associated with effects on the reproductive system in human epidemiological studies, including sperm damage (Hubinger 2008).</td>
</tr>
<tr>
<td>Linalyl acetate</td>
<td>11</td>
<td>An ester of the common fragrance ingredient and known sensitizer linalool.</td>
<td>Ingredient listed in the FDA’s list of substances “Generally Recognized As Safe” (21CFR 186.20). Public safety data limited to sensitization studies. Oxidation of linalool esters upon storage and air exposure leads to formation of allergic oxidation products (Hagvall 2008).</td>
</tr>
<tr>
<td>Gamma-terpinene</td>
<td>11</td>
<td>A naturally occurring and synthetically produced scent and flavouring chemical, found in many essential oils (Chizzzola 2008).</td>
<td>Ingredient listed in the FDA’s “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>p-cymene (paracymene)</td>
<td>11</td>
<td>A naturally occurring and synthetically produced scent and flavouring chemical; used in manufacture of musks. Known under the names p-cymene and p-isopropyl-toluene.</td>
<td>Ingredient listed in the FDA’s “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Inhalation exposure associated with neurotoxicity (reduced density and number of synapses) in laboratory animals (Bohl 1999).</td>
</tr>
<tr>
<td>2,6-dimethyl-7-octen-2-ol</td>
<td>10</td>
<td>A synthetic solvent and a masking ingredient that does not occur in nature; commonly included in cleaning and deodorizing (air freshener) products. Also known under its trade name dihydromyrcenol.</td>
<td>Recent industry review of dihydromyrcenol reported irritation but lack of sensitization associated with this ingredient. Minimal developmental toxicity reported; no studies on mutagenicity, genotoxicity or carcinogenicity conducted (Ham 2009).</td>
</tr>
<tr>
<td>Ethylene brassylate</td>
<td>10</td>
<td>A macrocyclic musk ingredient, also known under the trade name Musk T.</td>
<td>Ingredient listed in the FDA’s “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Only three studies on this ingredient found in PubMed. Ethylene brassylate has been reported to induce biochemical changes in skin cells, but no genotoxicity or estrogenicity (Abramsson-Zetterberg 2002; Bitsch 2002; Kim 2006).</td>
</tr>
<tr>
<td>t-butyl alcohol</td>
<td>8</td>
<td>A common solvent and denaturant; also used as a flavor ingredient.</td>
<td>No safety studies identified in open scientific literature. FDA lists this compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>Ingredient</td>
<td>How many products contain it?</td>
<td>What is this chemical?</td>
<td>Is public safety data available?</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Hexyl acetate</td>
<td>7</td>
<td>A scent ingredient and a synthetic flavouring agent.</td>
<td>No safety studies identified in open scientific literature. FDA lists this compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>Cis-2,6-dimethyl-2,6-octadiene</td>
<td>7</td>
<td>Decomposition product from other scent ingredients (Hattori 2004).</td>
<td>No toxicity studies identified in PubMed.</td>
</tr>
<tr>
<td>Alpha-pinenes</td>
<td>6</td>
<td>Naturally found in oils from pines and other conifers; also produced synthetically; commonly used as scent ingredient in a wide range of consumer products.</td>
<td>FDA lists this compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Inhalation exposure to high concentrations associated with irritation of the respiratory airways. Alpha-pinenes oxidize upon air exposure to oxygen, forming potent respiratory irritants (Neuenschwander 2010; Nielsen 2005; Rohr 2002; Venkatachari 2008).</td>
</tr>
<tr>
<td>Cashmeran</td>
<td>6</td>
<td>A synthetic polycyclic musk, also known by its chemical name abbreviation DPMI.</td>
<td>Cashmeran has been reported to have estrogen-like activity in laboratory experiments with cultured cells, but no genotoxicity (Keukekordes 1997; Mori 2007).</td>
</tr>
<tr>
<td>Isopropyl myristate</td>
<td>6*</td>
<td>A thickening agent and an emollient.</td>
<td>Enhances skin penetration and absorption of other ingredients; has been associated with allergic contact dermatitis (Bharati 2004; Panigrahi 2005).</td>
</tr>
<tr>
<td>Phenethyl alcohol</td>
<td>6</td>
<td>A flavor ingredient found in essential oils and produced synthetically.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>Benzyl acetate</td>
<td>5</td>
<td>A scent chemical and a flavouring agent that occurs naturally in essential oils and is also produced synthetically.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21 CFR 172.515). Benzyl acetate has been reported to cause mutations and have carcinogenic activity in some animal studies (NTP 1993).</td>
</tr>
<tr>
<td>Tonalide</td>
<td>5</td>
<td>A synthetic polycyclic musk also known by its chemical name abbreviation, AHTN.</td>
<td>Has been reported to interfere with estrogen and androgen (male) hormones. Tonalide is bioaccumulative (builds up in the adipose tissue) and has been found in the bodies of humans, in breast milk and in wildlife (van der Berg 2008).</td>
</tr>
<tr>
<td>Ingredient</td>
<td>How many products contain it?</td>
<td>What is this chemical?</td>
<td>Is public safety data available?</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Trans-beta-ionone</td>
<td>5</td>
<td>In a group of scent chemicals called ionones, found in essential oils such as rose oil and also produced synthetically. Extensively used as fragrance and flavouring ingredients.</td>
<td>Several ionones, including beta-ionone, are approved by FDA for use as direct food additives (21CFR 172.515). Alpha-ionone, a structurally similar chemical, is a recognized consumer allergen. Two recent industry reports on ionone toxicity noted the absence of chronic toxicity and carcinogenicity studies for the entire group of ionones (Laiko 2007; RIFM 2007).</td>
</tr>
<tr>
<td>Limonene</td>
<td>3*</td>
<td>A fragrance chemical and flavouring ingredient derived from citrus peel; also used as a solvent in cleaning products and degreasers.</td>
<td>Ingredient listed in the FDA’s list of substances “Generally Recognized As Safe” (21CFR 182.60). Upon storage and air exposure, limonene breaks down to form potent sensitizers. Listed by the European Union as one of the known consumer allergens (EC 1999; Karlberg 1997; Topham 2003).</td>
</tr>
<tr>
<td>Terpineol</td>
<td>3</td>
<td>A scent ingredient and a flavouring agent.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Studies in the open scientific literature are focused primarily on sensitization; studies on chronic toxicity, reproductive toxicity or carcinogenicity have not been done (Bhatia 2008).</td>
</tr>
<tr>
<td>Alpha-cedrene</td>
<td>3</td>
<td>A scent ingredient.</td>
<td>No studies on alpha-cedrene toxicity have been identified in PubMed. A related compound, acetyl-cedrene, has been associated with allergic contact dermatitis (Handley 1994; Lapczynski 2006).</td>
</tr>
<tr>
<td>Heliotropine</td>
<td>3</td>
<td>A synthetic chemical with a vanilla smell and flavour. Also called Piperonal. No studies on alpha-cedrene.</td>
<td>Known phototoxin (Tenenbaum 1984). FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 182.60).</td>
</tr>
<tr>
<td>Eugenol</td>
<td>2*</td>
<td>Scent chemical that occurs naturally in clove oil.</td>
<td>A known sensitizer; listed by the European Union as one of most frequently reported consumer allergens in fragrances (EC 1999). Listed by FDA among substances “Generally Recognized As Safe” (21CFR 184.1257).</td>
</tr>
<tr>
<td>Lilial</td>
<td>2*</td>
<td>Synthetic scent chemical also known under the name butylphenyl methylpropional.</td>
<td>A skin sensitizer; listed by the European Union as one of most frequently reported consumer allergens in fragrances (EC 1999). Listed by FDA among substances “Generally Recognized As Safe” (21CFR 184.1257).</td>
</tr>
<tr>
<td>Ingredient</td>
<td>How many products contain it?</td>
<td>What is this chemical?</td>
<td>Is public safety data available?</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Dimethylbenzyl carbinyl butyrate</td>
<td>2</td>
<td>A scent ingredient; commonly used as flavouring agent.</td>
<td>No toxicity studies for this compound have been identified in PubMed. FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515).</td>
</tr>
<tr>
<td>Octinoxate</td>
<td>1*</td>
<td>A UV absorber and common sunscreen chemical.</td>
<td>Associated with adverse impact on the endocrine system (estrogen and thyroid hormones). May cause phototoxic effects (Klammer 2007; Rodriguez 2006).</td>
</tr>
<tr>
<td>Benzyl salicylate</td>
<td>1*</td>
<td>A scent chemical and a UV absorber.</td>
<td>Listed by the European Union as one of the most frequently reported and well-recognized consumer allergens (EC 1999). FDA allows the use of this compound as a direct food additive (21CFR 172.515).</td>
</tr>
<tr>
<td>Dihydro-alpha-terpinol</td>
<td>1</td>
<td>A scent ingredient, found in pine oil; also known as dihydro-alpha-terpineol.</td>
<td>Published literature limited to irritation and sensitization studies. No studies available on chronic, developmental and reproductive toxicity or carcinogenicity (Bhatia 2008).</td>
</tr>
<tr>
<td>Anethole</td>
<td>1</td>
<td>A scent ingredient and a flavouring agent.</td>
<td>FDA lists this compound among substances “Generally Recognized As Safe” (21CFR 182.60), despite reports of liver toxicity and possible liver carcinogenicity (Marshall 1996; Newberne 1999).</td>
</tr>
<tr>
<td>Butyl acetate</td>
<td>1</td>
<td>A solvent and synthetic flavouring ingredient.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Inhalation exposure has been associated with irritation, systemic toxicity and degeneration of the olfactory epithelium (David 2001).</td>
</tr>
<tr>
<td>Isododecane</td>
<td>1</td>
<td>A volatile hydrocarbon used as solvent and emollient in cosmetics (Cosing).</td>
<td>No toxicity studies identified in PubMed.</td>
</tr>
<tr>
<td>Isoamyl butyrate</td>
<td>1</td>
<td>A scent ingredient and synthetic flavouring agent.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). No toxicity studies identified in PubMed.</td>
</tr>
<tr>
<td>Diethyl succinate</td>
<td>1</td>
<td>A naturally occurring volatile chemical; used as solvent in fragrance formulations.</td>
<td>FDA lists the compound among “Food additives permitted for direct addition to food for human consumption” (21CFR 172.515). Acts as a permeation enhancer (Takahashi 2002). No toxicity studies identified in PubMed.</td>
</tr>
<tr>
<td>Ingredient</td>
<td>How many products contain it?</td>
<td>What is this chemical?</td>
<td>Is public safety data available?</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Musk ketone</td>
<td>1</td>
<td>A synthetic nitromusk</td>
<td>Musk ketone accumulates in the bodies of people and in the environment; has been associated with estrogenic effects (Bitsch 2002; TNO 2005).</td>
</tr>
</tbody>
</table>

* Asterisk identifies ingredients that were disclosed on the label for some of the tested products. For these ingredients, the number listed in the column “How many products contain it?” is the number of products that did not disclose this ingredient on the label.

Source: Environmental Working Group analysis of product labels, product tests commissioned by the Campaign for Safe Cosmetics, and the open scientific literature.
APPENDIX E: COMPANIES THAT FULLY DISCLOSE INGREDIENTS

As of April 5, 2010, the following companies have fully disclosed all ingredients – including fragrance – on their ingredient labels and on EWG’s Skin Deep Cosmetics Database as part of their commitment to the Compact for Safe Cosmetics, a pledge of safety and transparency administered by the Campaign for Safe Cosmetics. Learn more by visiting www.safecosmetics.org/compact.

A Mano Bath	Binda Baby Essentials	Dr. Bronner’s Magic Soap
Acquarella LLC	Bloomin’ Cosmetics	Earth Mama Angel Baby
Advanced Cosmetic Technologies	Body Sense	EO Products/Small World Trading Co Inc.
African Earth Skincare	Bombastic Aromatics	Edamame, Inc.
Afterglow Cosmetics, Inc.	Botanical Skin Works	Eden’s Kiss
Aguacate & Co.	Bottoms Up Pty Ltd	Elemental Herbs
Alchemilla	Buddha Nose Ltd	Elements Naturals
Alexami Cosmetics	Bum Boosa Bamboo Baby Wipes	Elysian Dream
Alima Cosmetics, Inc.	CNaturals, Inc.	Emily Skin Soothers, Inc
Alvin Connor Ltd	California Baby	Enfusia-Cocoon
Amanie	Castle Baths	Enkido
Apala Beauty	Cedar Spring Herb Farm	Erth Minerals
Apriori Beauty	Chagrin Valley Soap and Craft	Essence of Wellbeing
Arganat Inc.	Chartreuse, Inc.	Eve Organics
Aroma 1	Classy Minerals	Ferro Cosmetics
Aromaland Inc.	CleanWell Company	Florence Quesnel
Aubrey Organics, Inc.	Clovertree Apothecary	Aromatherapie
Aurora Nova, LLC	Coastal Classic Creations	French Transit, Ltd
Ava Anderson NonToxic	Cocoon Apothecary	For My Kids
Avalon Organics	Colorganics, Inc	Garden Girl Natural Skin Care
Awa Skin Care	Consonant Body Organic Skincare	Garden of Eve
B.SOAPURE LLC	Cosmetics Without Synthetics	Generation to Generation
BABYBEARSHOP, LLC	Cosmic Tree Essentials Ltd.	Glam-Nation, LLC
BECAUSE Skin Care, LLC	Cotton Creek Soap and Sundries	Glengarry Gardens
Baco Botanicals	Daily Essence	Gluten Free Beauty
Bare Organics Inc.	Dancing Dingo Luxury Soap	Golden Earth Inc.
Bath By Bettijo LLC	Dermaviduals USA	Good for You Girls
Beaute Minéral	Destiny Boutique	Green Beauty Cosmetics
Beaute Club	Divine Minerals	Greenbody Greenplanet
Belle’s Botanicals	Divine Response	HCGCoach.com LLC
Belli Cosmetics	Doctor T’s Supergoop!	Herbaliz
Beyond Coastal		continued on next page...

continued on next page...
Herban Lifestyle
Hippy Heaven Natural Beauty
Holistic Body Care
Infantbows, LLC
Inika
Innocent Oils
Intelligent Nutrients
Iredale Mineral Cosmetics, Ltd.
JaDora Cosmetics
Jes Collection Health & Beauty, LLC
Jess’ Bee Natural
Jiade Organic Cosmetics
Karen’s Botanicals
Keys, Inc.
Khushi Spa Products
LUVU Beauty
La Vie Celeste
Lalabee Bathworks
Lash Advance
Lauren Brooke Mineral Cosmetiques
Les Parfums d’Isabelle
Lily Organics, Inc.
Little Forest Natural Baby Products
Live Native
Longhairlovers/ICP Corp.
Loriannz
Loving Naturals
MOM Enterprises, Inc.
MadeOn Lotion Bars
Maia’s Mineral Galaxy
MammaMichal Freshly Made All Natural Body Care Products
Marie Veronique Organics
Max Green Alchemy Ltd.
Meadowlake Farm Honeybee Products LLC
MendMeShop
Mexitan Products
MineralFace FX
Mixaroma Inc
Monet Minerals
MoniMay, Inc.
Morning Indigo, LLC
Motherlove Herbal Company
Mountain Girl Botanics, Ltd.
MuLondon Natural Organic Skincare
Musq
My Lip Stuff
My Mama’s Love
NONTOXIQUE BEAUTY, LLC
Naked Soapworks
Natural Family Botanicals
Natural Formulations
Natural Resource Group
NaturalCurls
Nature’s Baby Organics
Nature’s Boundaries
Nature’s Pharma
Naturet LLC
Naturoli
Naturopathica Holistic Health
Nine Naturals
Novena Cosmeceuticals Inc
Nurture My Body
Nuvo Cosmetics
Oblige by Nature
Over the Rainbow Lotions & Notions
PROVIN Cosmeceuticals
Pangea Naturals, Inc.
Paul Penders Company
Pharmacopia
Phat Organics/Aloha Products
Pink Quartz Minerals
Planet Botanicals
Poof’s Closet
Pristine Recovery
Pure Anada Cosmetics
Purple Prairie Botanicals
RJ Mineral Cosmetics
Rejuva Minerals
SAXX Mineral Makeup and Organics
Salon Naturals, LLC
Samantharoma LLC
Sensibility Soaps, Inc.
Serenity Skincare
Shan Image Consulting
SheAyurvedics Skin Care
Shea Butter Market
Shea-Janee
Silver Unicorn Spirit Gifts
Skin LLC
Skin QR Organics
SkinGenX
Soap for Goodness Sake
Sun Putty
SunCat Natural Mineral Makeup
SunnyWipes
Sweetsation Therapy
Swissclinical
Symmetry Skin Quenchers
TawnaHillBaby
Tea Naturals Skin Care
Terressentials
The Merry Hempsters
Trillium Herbal Company
Trukid
U.P. Bathworks
UV Natural International PTY LTD
UrbanDetox
Verdure Botanoceuticals Skin Care
Vysada Inc. Ayurvedic Natural Skin Care
W.S. Badger Company
Welstar
Whole Truth Holistic Health Solutions
Wholistic, Inc
XANGO, LLC
Yellowstone Bees Inc.
Zoe Organics
Zosimos Botanicals, LLC
free of, inc.
ibody science
iolo levu
non toxic skin care
radiantLIFE
rms beauty
suki pure skin care
the formulaah
thinkbaby and thinksport
Weleda
REFERENCES

Campaign for Safe Cosmetics reports, 2002-2010. For a full list of reports, see http://www.safecosmetics.org/section.php?id=48.

Decomposition of Linalyl acetate, 2,6-Dimethyl-2,6-Octadienes from Thermal
Hattori S, Kawaharada C, Tazaki H, Fujimori T, Kimura
Handley J, Burrows D. 1994. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl
Handley J, Burrows D. 1994. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl
dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with atmospheric Environment 43(26): 4023-4032.
Handley J, Burrows D. 1994. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl
dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with atmospheric Environment 43(26): 4023-4032.
NOT SO SEXY: THE HEALTH RISKS OF SECRET CHEMICALS IN FRAGRANCE | Canadian Edition

National Toxicology Program (NTP). 1992. NTP Technical Report on Toxicity Studies of 2-Hydroxy-4-methoxybenzophenone (CAS Number: 131-57-7) Administered Topically and in Dosed Feed to F344/N Rats and B6C3F1 Mice.

Schlecht C, Klammer H, Jarry H, Wuttke W. 2004. Effects of estradiol, benzophenone-2 and benzophenone-3 on the expression pattern of the estrogen receptors (ER) alpha and beta, the estrogen receptor-related receptor 1 (ERR1) and the aryl hydrocarbon receptor (AhR) in adult ovariectomized rats. Toxicology. 205(1-2): 123-30.

Schnuch A, Uter W, Geier J, Lessman H, Frosch PJ. Sensitization to 26 fragrances to be labeled according to current European regulation: Results of the IVDK and review of the literature. Contact Dermatitis 2007 57: 1-10.

NOT SO SEXY: THE HEALTH RISKS OF SECRET CHEMICALS IN FRAGRANCE

Sendergaard D and Olsen P. 1982. The effect of butylated hydroxytoluene (BHT) on the rat thyroid Toxicology Letters 10(2-3): 239-244.

